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ABSTRACT 

We consider nonnegative solutions to the Cauchy problem or to the exterior 

Dirichlet problem for the  quasil inear parabolic equat ions  ut = Aum + u p 

with  1 < m < p. In case of the  Cauchy  problem, it is well known tha t  

p*  = m + 2IN is the  critical exponen t  of blow-up. Namely,  if p < Pm, 

t h e n  all nontr ivial  solutions blow up in finite t ime (blow-up case), and  if 

p > p * ,  t hen  there  are nontr ivial  global solutions (global exis tence case). 

In this  paper  we show: (i) For the  Cauchy  problem, p *  belongs to the  

blow-up case. (ii) For the  exterior Dirichlet problem, p *  also gives the  

critical exponen t  of blow-up. 

1. Introduction 

Let ~ = R N or an exterior domain in R N with a smooth boundary Oft. We 

consider the initial-boundary value problem 

(1.1) 
(1.2) 
(1.3) 

O t u =  A u m  + u p , (x,t) C~2x(0, T), 

u(x, o) = uo(x), x ~ ~, 

u(x, t) = O, (x, t) e Oa • (0, T) 
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(if ~ = R N, the boundary condition (1.3) is dropped), where m > 1, p > 1 

and uo(x) > O. We shall only consider nonnegative solutions u. If uo(x) E 

B C ( ~ )  (bounded continuous functions), then a unique weak nonnegative solution 

of (1.1)-(1.3) exists at least for sufficiently small T > 0. When T = ec we say 

u is global. Otherwise we say u blows up in finite time. In the latter case, it 

follows that  

sup u ( x , t ) - ~ o c  as t T T .  
x E R  N 

In case ~ = R N, the following results are well known by the classical papers of 

Fujita [3] (when m = 1) and Galaktionov et al. [5] (when m > 1). 

(I) If 1 < p < m + 2/N,  then all nontrivial nonnegative solutions of (1.1)-(1.3) 

blow up in finite time. 

(II) If p > m + 2/N,  then global solutions of (1.1)-(1.3) exist when the initial 

data are sufficiently small. Case (I) is called the blow-up ease; (II) is called the 

global existence case. The number 

(1.4) p*  = m + 2 /N  

is called the critical exponent. Hayakawa [7] and Weissler [19] completed Fujita's 

result by showing that p~ belongs to the blow-up case. More recently, Bandle-  

Levine [1] proved that p~ is still the critical exponent if R N is replaced by any 

exterior domain gt. However, in this case it is not yet established whether or not 

p~ is in the blow-up case. On the other hand, in case m > 1, "~here are few works 

which shapen or extend the above result of [5], and p *  is not known to be in the 

blow-up case or not even when ~ -- R N (a rather complete survey of such results 

and related problems was given in Levine [11]). It is the purpose of this paper to 

answer some of these open problems. More precisely, our results are summarized 

in the following two theorems. 

THEOREM 1: The case f~ = R N. I f  N >>_ 1 and 1 <_ m < p <<_ p*,  then all 

nonnegative, nontrivial solutions of the Cauchy problem (1.1), (1.2) blow up in 

finite time. 

THEOREM 2: The case f~ ~ R N. 

(i) I f  N >>_ 2 and 1 <<_ m < p < p*,  then a11 nonnegative, nontrivial solutions 

of  (1.1)-(1.3) blow up in finite time. 

(ii) I f  N >_ 2 and p > p*  (m >> 1), then global solutions of (1.1)-(1.3) exist 

when the initial data are sufficiently small. 
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As is mentioned above, these theorems involve some known results. However, 

in the following, we shall give a unified proof to all the assertions of Theorems 

1 and 2 (i). Our proof restricted to the known results differs from those given 

in the preceding works. Theorem 2 (ii) easily follows from the corresponding 

result (II) for ~t = R N if we make use of a comparison theorem for parabolic 

equations. Moreover, the comparison theorem is applicable to reduce Theorem 

2 (i) to the special problem (1.1)-(1.3) with fl = ER =-- {x : Ixl > R}, R > 0. 

In the following, without loss of generality, we assume that  uo(x) is of compact 

support in gt: 

(1.5) uo(x) �9 Co(n). 

Then it follows that  u(., t) E LI(~)  for each t E (0, T) (Proposition 2.2). To show 

Theorems 1 and 2 (i) with f~ = ER, we shall first establish a blow-up condition 

on the initial data. Let u be a global solution to (1.1)-(1.3) with f~ = ER (we 

mean Eo = RN). Put  

(1.6) IR(t;e) = f_  u(x,t)pR(Ixl)e-~(l~l-R)2dx, e �9 (0, 1), 
dE R 

where po(r) -- 1 and, if R > 0, 

{ ~=R,  N _> 3, 
(1.7) pR(r) = log r - -  logR, N = 2. 

Then our blow-up condition in turn implies that 

(1.8) I0( t ;  e) ~ Co(N)E -N/2+I/(p-m) 

for any t _> 0, where Co(N) = 7rN/2(2N)I/(p-m), and if R > 0, 

{ CR(N)~-N/2+I/(p-m){1 ~- o(1)}, 
(1.9) In(t; e) ~_ CR(2)e -1+1~(p-m) log(e-W2){1 + o(1)}, 

for any t >_ 0, where CR(N) = ~rN/2(2N + 4) 1~(p-m). 
If m < p < Pro,* then letting ~ --* 0 in (1.8) and (1.9), we obtain 

(1.10) /E u(x't)PR(lxl)dx= O' 
R 

N>_3 
N = 2  
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which concludes u(x, t) = O. On the other hand, if p - - p * ,  then except the case 

N = 2 and R > 0, we can let e ~ 0 in (1.8) and (1.9) to obtain 

(1.11) E, U(X, t)pR(lxl)dx <_ Cn(N). 

This and equation (1.1) imply another inequality 

(1.12) ~o ~ /ER U(X, t)PpR(Ixl)dxdt <_ Cn(N). 

If we restrict ourselves to the case R = 0, i.e., ~ = l:t N, then with this inequality, 

u(x, t) - 0 is also concluded by reduction to absurdum. 

The blow-up condition which implies (1.8) or (1.9) is obtained based on an 

extended form of Jensen's inequality. Similar forms have been introduced and 

used in Bandle-Levine [1] when m -- 1. In the proof of critical blow-up, Hayakawa 

[7] and Weissler [19] reduced the problem to an integral equation, and made use 

of the explicit formula of the heat kernel. Similar approaches were employed by 

Levine-Meier [12] and Hamada [6] to establish another critical blow-up in cones. 

Our treatment differs from theirs since ours is based just on the weak formulation 

of equation (1.1) which we use to obtain inequality (1.12). 

The rest of the paper is organized as follows: In the next w we define a 

weak solution of (1.1), and prepare several preliminery propositions. A blow-up 

condition on initial data is given in Proposition 2.3. In w we consider the case 

Q = l:t N and prove Theorem 1. Finally, in w we partly extend the argument 

of w to the exterior problem (1.1)-(1.3). Theorem 2 (i) is initially proved for 

the special case f~ = ER. To complete the proof of the general case, we are able 

to apply the comparison theorem. Theorem 2 (ii) also applies the comparison 

theorem. 

After completing this work, we encountered the works of Galaktionov [4] and 

Kawanago [9] which also prove our Theorem 1. Their proofs are different from 

ours. Galaktionov [4] reduces the problem to the nonexistence problem of sta- 

tionary profile for some rescaled equation to (1.1). Kawanago [9] uses a blow-up 

condition given by Levine-Sacks [13] to prove his results. This condition differs 

from ours. More recently, based on our results, some progress has been made 

in the related problems. Suzuki [18] proved that the critical exponent p *  in 

Theorem 2 also belongs to the blow-up case if N _> 3. Mochizuki-Mukai [14] 
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extended our results and Suzuki's to the fast diffusion problem (1.1)-(1.3) with 

max{0, 1 - 2/N} < m < 1. 

2. P r e l i m i n a r i e s  

We begin with the definition of a weak solution of (1.1). 

Definition: By a solution of equation (1.1) in f~ x (0, T) we mean a function 

u(x, t) in ~ • [0, T) such that 

(i) u(x, t) >_ 0 and 6 BC(~ • [0, T']) for any 0 < T' < T. 

(ii) For any bounded domain G C ~, 0 _< r < T and nonnegative qo(x, t) 6 

C2(~ x [0, T)) which vanishes on the boundary OG, 

/G u(x, T)~(X, T)dx -- /G u(x, O)~(x, O)dx 

where n denotes the outer unit normal to the boundary. A supersolu- 

tion [or subsolution] is similarly defined with equality (2.1) replaced by > 

[or <]. 
Note that every weak solution is classical near the point (x, t) where u(x, t) > O. 

Assume that 

(2.2) f { ~ + l O t ~ l + l V ~ l + l a ~ l } d x < c r  

Then by a limit procedure we easily have 

(2.3) 

and ~(x, t) = 0 on 0f~ x [0, T). 

~ u(x, T)~(X, T)dx -- ~ U(X, O)~(X, O)dx 

The following comparison principle is well known for quasilinear equation (1.1) 

(see, e.g., Bertsch-Kersner-Peletier [2; Appendix]). The result will be freely used 

in the sequel. 

PROPOSITION 2.1: Let u [or v] be a supersolution [or subsolution] of (1.1). If  
u >_ v on the parabolic boundary off~ x (O,T), then we have u >_ v in the whole 

• [0, T). 

As a result of this comparison principle we can show the following 
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P R O P O S I T I O N  2.2: Let u(x , t )  be the solution to (1.1)-(1.3) with uo(x) E Co(ft). 

Thenu( . , t )  E LI (~)  foreachO <_ t < T. Moreprecisely, foranyfixedO < T'  < T, 

we have: 

(i) I f  m = 1, then there exists a C(T  ~) > 0 such that 

(2.4) u(x, t) <_ C(T')e  -1~12/a in f t x  [0, T']. 

(ii) I f  m > 1, then there exists a compact domain K C ~ such that 

(2.5) supp u(., t) C Ix" for any t E [0, T'], 

where supp u is the support of u in x E ~. 

Proof'. (i) Put  

a(T') = 

Then it follows from (1.1) that 

Otu <_ A u  + a(T')u,  

Let M > 0 be chosen to satisfy 

sup u(x, t) p-1. 
(x,t)E~x(O,T') 

(x, t) E n x (o, T']. 

uo(x) <_ M(47r)-N/2e-lX]2/4, x E i"l. 

Then comparing e-a(T')tu(x, t) with the solution to the initial value problem 

Otw = AT ,  (x, t) E R N • (0, c~), 
w(x,  O) = M(4~r)-N/2e -1~12/4, x E R N, 

we obtain 
u(x, t) < eaCT')tM(47r(t + 1))-N/Ze-lxl'/a(t+l) 

in fl • [0, Tq. Thus, (i) is proved. 

(ii) Let a(T ~) be as above. As is easily seen, the initial value problem 

Otw = A w  TM + a(T')w,  (x, t) E R g x (0, c~) 
w ( x ,  o) = uo(x) ,  z ~ R N 

has a global solution w. In fact, this problem has a supersolution 

~( t )  = ~oe a(T')t, ~o = supuo(x)  
xE~ 
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which is global in t > 0. By the comparison argument we have u <_ w _< N in 

f t x  (0, Tq. On the other hand, as is proved in Mochizuki-Suzuki [15; Theorem 

2.4], w(., t) is compactly supported in R N for each t E [0, T']. Thus, (ii) is proved. 
| 

Next, we shall establish a blow-up condition on initial data. The proof is 

almost the same as in Imai-Mochizuki [8; Theorem 1.1]. In case of m = 1, a 

similar condition has been used in Bandle-Levine [1; Theorem 2.3]. 

We assume the existence of the pair {~,s(x)} satisfying the following 

properties: 

_>0; s(x) E C2(~) and s(x) > O in a; 

(2.6) As(x) _> -)~s(x), in f~ and s(x) = 0 on Oft; 

a { s ( x )  + IVs(x)l  + IzXs(x)l}dx < ~. 

With this function s(x) we define J(t), t >_ O, as follows: 

(2.7) J(t)= (/as(x)dx)-l /au(x,t)s(x)dx. 

PROPOSITION 2.3: Let u be a solution to (1.1)-(1.3) with p > m. If uo is large 

enough to satisfy 

(2.8) J(O) > )d/(p-m), 

then u is never global in t. 

Proo~ We choose ~ = s(x) in (2.3). Then noting (2.6), we have 

J ( r ) -  J(O) > ( f a s ( x ) d x ) - l  fo" 

Put 

(2.9) 

1/(p--m) 

F(~)  : P - m  ( ~ )  - -  , 0 ~ ~ ~ (_~)l /(p-m) 

Then, by the Jensen inequality, 

(2.1o) ~0 7" J(r) >_ J(O) + F(J(t))dt = a(r). 
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Since F(~) > 0 in ~ > A 1/(p-m), the continuity of J(t) in t and (2.8) imply 

J(t) > A 1/(p-m) in 0 _< t < to if to > 0 is chosen sufficiently small. We shall 

show J(t) > ~W(p-m) as long as J(t) exists. Assume on the contrary that  

J(t) <_ A 1~(p-m) for some t _> to. Let TO be the smallest such value. Inequality 

(2.10) with ~- = TO then leads to a contradiction since we have fo  ~ F(J(t))dt > O. 

The above result shows that  a(~-) > J(0) in any T. Moreover, since F(~) is 

increasing in ~ > A 1/(p-m), it follows from (2.10) that 

F(J(T))  > r ( a ( ~ ) )  > o. 

Integrate both sides of the inequality 1 < r(J(r))/r(a(~)) over (0, t). Then we 

have 
f~ ( t )  d~ j[gOO d~ 

t <  - - <  
- -  J J (0 )  P ( ~ )  - (0) - A ~  TM "~- ~P < OO, 

from which we see that  u is never global in t. | 

The weak local solution u to (1.1)-(1.3) has been constructed as in Oleinik et 

al. [16] based on a result of Ladyzhenskaja et al. [10] for nondegenerate problems. 

This shows that  the existence time of u(t) depends only on the value 

I lu o l l~  = s u p  uo(x). 
x E R  N 

In fact, by means of the uniqueness of solutions and the comparison principle, 

u(t) is shown to exist at least up to the existence time of the supersolution 

v(,) = {ll,oliS +'- 1),} 
to (1.1)-(1.3). The following proposition is a result of this fact. 

PROPOSITION 2.4: Let u be the solution to (1.1)-(1.3). I f  u is not global in 

t, then it blows up in finite time. More precisely, let T1 > 0 be the maxima/ 

existence time of  u. Then we have 

(2.11) sup u(x, t)  --* cr as t T T1. 
xER g 

We shall close this section by giving a concrete expression of the (elementary) 

solution to the initial value problem 

f O,v = Av TM, (x, t) �9 R N • (o, oo), (2.12) 
I v(x, O) = LS(x), x �9 R N, 

where L > 0 and 5(x) is Dirac's 5-function. 
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PROPOSITION 2.5: Let 

( (2.13) e = m - 1 + ~ = (p* - -  1 )  - 1  

and 

I (47r)-N/2e-S2/4, m = 1, 
(2.14) Gin(s) [ A -  B82]1+/(m-l), m > 1, 

(m - 1)2 and A > 0 is chosen to satisfy where [a]+ -- max{a, 0}, B - 2mN 

fa am([x[ldx = 1. 
N 

Then the solution to (2.12) is given by 

(2.15) Era(x, t; L) = n ( L m - l t ) - t G m  ([xl(Lm-l t ) - t /g) .  

Proof'. If m = 1, (2.15) gives the usual heat kernel. (2.15) with m > 1 is also 

well known as the Barenblatt solution to the porous media equation (2.12) (see, 

e.g., Pattle [17]). | 

3. P r o o f  o f  T h e o r e m  1 

In this section we consider the solution u(x, t) to the Cauchy problem (1.1), (1.2) 

with f~ = R N and uo(x) e C0(RN). 

Theorem 1 will be proved in a series of lemmas. 

LEMMA 3.1: Assume that u is global. Then we have 

(3.1) I0(t; e) --- /R- u(x, t)e-~l*12dx < Co(Y)e -N/2+I/(p-'~), 

for any t >_ O, where Co(N) = 7rg/2(2N) 1~(p-m). 

Proof: Choose s(x) = s~(x) = e -~1~12 in (2.7). As is easily verified, this function 

satisfies properties (2.6) with fl = R N and A = 2Ne. Since 

/RN e-~'~12 dx = e-N/2 /RN e-l~12 dy = TrN/2e -N/2' 

The blow-up condition (2.8) is reduced to 

RN (x)e-~lxl2 dx > 7rN/2e-N/2 (2Ne) 1~(p-m) = Co(N)e -N/2+I/(p-m). UO 

Thus, every global solution u must satisfy the converse inequality (3.1). | 
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LEMMA 3.2: 

(i) 

K. MOCHIZUKI AND R. SUZUKI 

Assume that u is global. 

I f  l ~ m < p < p* ,  then we have 

(3.2) JRfN u(x,  t )dx = 0 for any t >_ O. 

for any t >_ O. 

Proof'. 

convergence theorem shows 

l imfR  u ( x , t ) e - ~ l X l 2 d x = f R  u (x , t )dx .  
e ~ O  N N 

On the other hand, in (3.1) the exponent of c is 

N 1 N ( p ~  - p) 

2 + _ -  
>_o. 

Thus, letting e --* co in (3.1), we conclude the assertions of the lemma. | 

LEMMA 3.3: Assume that  u is global. I f  p = Pro, then we have 

(3.4> fRN u(x,t>pdx < (2N IN'. 

Proofi We also use Proposition 2.2. Since u(.,t) E LI(RN),  we can choose 

- 1 as a test function in (2.3). Then we have 

(,,> 

and (3.4) is concluded from (3.3) and (3.5). | 

The next lemma will estimate the solution v to the Cauchy problem 

(3.6) I O,v = a v  ~,  (~, t) e R ~ x (o, 0o) 
[ ~ (z ,0)  = u0(x), �9 �9 R ~ 

from below. 

Since u( . , t )  C LI (R  N) by Proposition 2.2, the Lebesgue dominated 

Isr. J. Math. 

(ii) If  p = p * ,  then we have 

(3.3) JRfN U(X, t )dx ~_ Co(N)  = (2N~r) N/2 
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LEMMA 3.4: Let uo(x) ~ O. 

(i) I f  m = 1, then for any to > 0, there exists a constant C(to) > 0 such that 

(3.7) v(x, t)  > C(to)El(x, t /2;  1) in R N • [to, c~). 

(ii) I f  m > 1, then there exists L1 > 0 and tl > 0 such that 

(3.8) v(x, t) >_ Era(x, t + tl; L1) in R N • [0, (x)). 

Proof: Without loss of generality, we can assume that u0(0) > 0. Then there 

exists a small 5 > 0 such that Uo(X) _> a > 0 in B~ = {x; Ixl < 5}. 

(i) We have 

v(x, t)  -- El ( . , t ;  1) * uo(x) >_ (4~rt)-N/2e -1~12/2t f e-M2/2tuo(y)dy, 
J R N  

w h e r e ,  means the convolution in R N. Then choosing 

C(to) = 2-N/2a f e-lYl2/2t~ > O, 
d B~ 

we obtain (3.7). 

(ii) Note that  (2.15) with m > 1 gives 

1/('m-- 1) 
Em(x , t ;L)  • L2e/gt-e [ A -  Blxl2(L'~-lt)-2e/N]+ 

For fixed L > 0 we first choose tl > 0 so small that (A /B) I /2 (Lm- l t l )  ~/g < 5. 
y 2 s  4--s A Next, we choose L1 > 0 very small to satisfy ~1 ~1 ~. < a. Then we have 

Uo(X) >_ Em(x, tl; L1). 

Applying the comparison argument, we obtain (3.8). | 

Proof of Theorem 1: As is mentioned in Proposition 2.4, every nonglobal solu- 

tion to (1.1), (1.2) blows up in finite time. So, to complete the proof we have only 

to show that  every nontrivial solution is nonglobal. Contrary to the conclusion, 

assume that  for given Uo(X) ~ 0, the Cauchy problem (1.1), (1.2) has a nontrivial 

global solution u. 

In case 1 < m < p < p* ,  this assumption and Lemma 3.2 (i) contradict each 

other since (3.2) implies u(x, t) - O. So, we have only to consider the critical 
$ 

c a s e  p = Pro" 
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Let  v satisfy (3.6). Then  v becomes a subsolution to (1.1), (1.2), and we have 

v < u in the whole R N • [0, (x)). Combining this and L e m m a  3.4, we ob ta in  

{C(to)Ei(x, t /2;1),  t>_to, m = l ,  
u(x,t)>_ Em(x , t+ t i ;L i ) ,  t>_O, m > l .  

Thus,  it follows f rom L e m m a  3.3 tha t  

(3.9) 

(2N~r)N/2 >_ ~t~ JRN{C(to)Ei(x,t/2;1) }Pdxdt 

- -  - l l dz 

for any T _> to if m = 1, and 

/0"J  (2N~r) N/2 >_ Era(x, t + tl; Li)Pdxdt 
N 

( 3 . 1 o )  = (LT-lt)-' (L' -lt)edt am(Ixl)Pdx 
JRN 

for any r _> t l  if m > 1. Here, since p = p~ ,  we have N(p - 1)/2 = 1 in (3.9) 
and f (p  - 1) =. 1 in (3.10). Then  the right sides of bo th  inequalities go to e~ if 

we let T --* OC. 

Thus,  a contradict ion occurs, and the proof  of Theo rem 1 is completed.  | 

4. P r o o f  o f  T h e o r e m  2 

We shall first consider the special case gt = ER, R > 0. In  order to obta in  an 

inequali ty corresponding to (3.1), we have to modify  the function e -~l~12 to fit 

the  exter ior  problem.  

LEMMA 4.1: We put s~(x) = pR([x[)e -~(l*l-R)2, where 

r - R  N > 3 ,  
(4.1) pR(r) = r ' - 

log r - log R, N = 2. 

Then this s~(x) satisfies properties (2.6) with f~ = En and A = 2 ( N  + 2)e. 

Proof." We shall show the inequali ty 

(4.2) As~(x) _> - 2 ( N  + 2)es~(x) in ER. 

The  other  proper t ies  are more  easily verified. 
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We put  r = Ixl. Then  O~pR = Rr -2 if N > 3 and = r -1 if N = 2, and 

APR = (o2 + N -- I o~)PR = { (N - O, NN >- 2. 

Noting A p n  _> 0, we have 

(4.3) 

Ase(x) > pnAe -r + 2(O.pn)O.e -r200 

>_ -2Nest (x)  - 4e(r - R)(O~pn)e -~(~-n)=. 

Here 

(4.4) 

r - R  

R 
- -pR,  N _> 3, 

( r -  R)&pa = r r -  R 
log R_ N = 2. r ( l o g r  

Since 
r ( l o g r - l o g R )  - r 

LEMMA 4.2: For s~(x) given above, we have 

(4.5) JE sr = { ~rN/2e-N/2(1 § 0(1)}, 
n zre-1 1~ 1 + o(1)}, 

R 
< - -  < 1 in En ,  (4.3) and (4.4) show (4.2). 

N _ > 3  
N - - 2  

as e -+ 0. 

Proos Note tha t  

8e(x)dx : ~.-N/2cdN (~ + el/2R)N-lpn(e-1/2~ + R)r 
R 

where WN is the surface area of the unit  sphere. Here, 

(~ § el/2R)N-lpR(e-1/2 ~ § R) ~ (~ § R)N-2~,  and -+ ~N-1 as  e -+ 0 

if ~hr _> 3, and 

i f N  = 2. 

domina ted  convergence theorem.  

_ < ( ~ + R ) { l + l o g ( ~ - ) } ,  and - + ~  a s e ~ 0  

Thus,  we conclude the above assertion in vir tue of the Lebesgue 

| 

With  these two lemmas,  we can follow the line of proof  of L e m m a  3.1 to obta in  
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LEMMA 4 . 3 :  

have 
Let UR be a global solution to (1.1)-(1.3) with ~t = ER. Then we 

IR(t; r =-- - -.fPR uR(x, t)pR(]x[)e-~('"-R)2dx 

+ o(1)}, N > 3 
(4.6) <- CR(2)e -l+l/(v-m) log(e-U2){1 + o(1)}, g = 2 

for any  t _> 0, where CR(N) = :ru/2(2N + 4) x/(p-m). 

Proof of Theorem 2 (i): (Special case) Let  uR be as in the above lemma.  Note 

t ha t  uR(', t) C LI(ER) by Proposi t ion  2.2, and the exponent  of e in (4.6) is 

N +  1 _  N ( p * - p )  >0. 
2 p - m 2(p - m)  

Thus,  le t t ing e --* 0 in (4.6), we obta in  

(4.7) /E uR(x,t)PR(IxI)dx= O 
R 

for any t > 0. Since PR(Ix[) > 0 in ER, it follows tha t  UR(X, t) =-- O. 
As in the  case of the Cauchy problem, this proves Theorem 2 (i) for fl -- ER. 

| 

Proof of Theorem 2 (i): (General  case) Let  u be a global solution to (1.1)-(1.3) 

with any exter ior  domain  gt. We choose R > 0 so large t ha t  ER C ~t. Assume 

tha t  u is nontrivial .  Then  u(x, t) > 0 in ~2 x (0, oc) if m = 1. On the other  hand,  

if m > 1, by  use of the Barenbla t t  solution (2.15), we easily see tha t  supp u(., t) 

spread out  to  the whole fl as t -~ c~. Thus,  f rom the beginning, we can assume 

tha t  there  exists a nonempty  domain  K C ER such tha t  uo(x) > 0 in K .  

Let  uR be the solution to (1.1), (1.2) with fl = ER and with initial condit ion 

uR(x, 0)  = 

where ~OK(X ) E c ( g )  is any function satisfying 

0 < ~K(X) _~ 1 in K,  and ~K(X) = 0 on OK. 

Then  we can compare  u and uR to obta in  

(4.8) u(x,t) >_ UR(X,t) in ER x [0, oc). 
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However, as we know in the above proof, un blows up in finite time. Hence, (4.8) 

contradicts the assumption that  u is global. 

Theorem 2 (i) is thus completely proved. | 

Proof  of Theorem 2 (ii): We choose uo(x) E Co(f~), 7~ O, so small that  the 

Cauchy problem (1.1),(1.2) in R N x (0, T) has a global, nontrivial solution ~(x, t). 

Let u be a solution to (1.1)-(1.3) with the same initial data  Uo. Then we can 

also compare these two functions to obtain 

u ( x , t ) ~ t ( x , t )  i n ~ •  T). 

If we assume that  u blows up in "finite time, this raises again a contradiction since 

is global. Theorem 2 (ii) is thus proved. | 
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